3.135 \(\int \frac{1}{(a+a \cos (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=77 \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a \cos (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{\sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}} \]

[Out]

ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])]/(2*Sqrt[2]*a^(3/2)*d) + Sin[c + d*x]/(2*d*(
a + a*Cos[c + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0389913, antiderivative size = 77, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.214, Rules used = {2650, 2649, 206} \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a \cos (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{\sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^(-3/2),x]

[Out]

ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])]/(2*Sqrt[2]*a^(3/2)*d) + Sin[c + d*x]/(2*d*(
a + a*Cos[c + d*x])^(3/2))

Rule 2650

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Cos[c + d*x]*(a + b*Sin[c + d*x])^n)/(a*
d*(2*n + 1)), x] + Dist[(n + 1)/(a*(2*n + 1)), Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d},
 x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{(a+a \cos (c+d x))^{3/2}} \, dx &=\frac{\sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac{\int \frac{1}{\sqrt{a+a \cos (c+d x)}} \, dx}{4 a}\\ &=\frac{\sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}-\frac{\operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{2 a d}\\ &=\frac{\tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a+a \cos (c+d x)}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{\sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0660621, size = 63, normalized size = 0.82 \[ \frac{\cos ^2\left (\frac{1}{2} (c+d x)\right ) \left (\tan \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right ) \tanh ^{-1}\left (\sin \left (\frac{1}{2} (c+d x)\right )\right )\right )}{d (a (\cos (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^(-3/2),x]

[Out]

(Cos[(c + d*x)/2]^2*(ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2] + Tan[(c + d*x)/2]))/(d*(a*(1 + Cos[c + d*x]))
^(3/2))

________________________________________________________________________________________

Maple [B]  time = 1.49, size = 138, normalized size = 1.8 \begin{align*}{\frac{1}{4\,d}\sqrt{a \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( \sqrt{2}\ln \left ( 2\,{\frac{2\,\sqrt{a}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+2\,a}{\cos \left ( 1/2\,dx+c/2 \right ) }} \right ) \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}a+\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \right ){a}^{-{\frac{5}{2}}} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{ \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+cos(d*x+c)*a)^(3/2),x)

[Out]

1/4/a^(5/2)/cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2^(1/2)*ln(2*(2*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2
)^(1/2)+2*a)/cos(1/2*d*x+1/2*c))*cos(1/2*d*x+1/2*c)^2*a+a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2))/sin(1/
2*d*x+1/2*c)/(cos(1/2*d*x+1/2*c)^2*a)^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 1.68665, size = 409, normalized size = 5.31 \begin{align*} \frac{\sqrt{2}{\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{a} \log \left (-\frac{a \cos \left (d x + c\right )^{2} - 2 \, \sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{a} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{8 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/8*(sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a*cos(d*x +
 c) + a)*sqrt(a)*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 4*sqrt(a*cos(
d*x + c) + a)*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a \cos{\left (c + d x \right )} + a\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))**(3/2),x)

[Out]

Integral((a*cos(c + d*x) + a)**(-3/2), x)

________________________________________________________________________________________

Giac [A]  time = 2.10006, size = 109, normalized size = 1.42 \begin{align*} -\frac{\frac{\sqrt{2} \log \left ({\left | -\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} \right |}\right )}{a^{\frac{3}{2}}} - \frac{\sqrt{2} \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a^{2}}}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

-1/4*(sqrt(2)*log(abs(-sqrt(a)*tan(1/2*d*x + 1/2*c) + sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a)))/a^(3/2) - sqrt(2)*s
qrt(a*tan(1/2*d*x + 1/2*c)^2 + a)*tan(1/2*d*x + 1/2*c)/a^2)/d